

ENTWURF DER LAI-HINWEISE UND INTERIMSVERFAHREN

Dr. Rasmus Fischer

TÜV NORD EnSys GmbH & Co. KG, Hamburg

SERVICE PORTFOLIO WIND ENERGY

- Full service provider
- +20 years experience in wind
- Ca. 80 engineers + TN Group
- Subsidiaries in over 70 countries

Certification:

- Type & Project Certification for On-/Offshore
- Design Assessment, Component Certification, Type Approval

Site-Assessment:

- Wind Resource Assessment, AEP, etc.
- Environmental Impact, Risk Assessment, CFD
- Technical Advisory/ Technical Due Diligence
- Lifetime Extension

Inspection:

 2nd and 3rd Party Inspections such as Manufacturing Inspections, Shop Approvals, Commissioning/Periodic/EoW Inspections, Service Lifts Inspections

AKTUELLER STAND

LAI-Hinweise zum Schallimmissionsschutz bei Windkraftanlagen

Beschluss der 134. Sitzung der Bund/Länder-Arbeitsgemeinschaft für Immissionsschutz am 05. und 06. September 2017 in Husum:

- Die LAI nimmt zur Kenntnis, dass im Ergebnis der Messungen, die von Schleswig-Holstein, LEE und BWE veranlasst wurden, keine Änderungen an dem Entwurf der Hinweise zum Schallimmissionsschutz an Windkraftanlagen erforderlich sind.
- Die LAI empfiehlt den Ländern, die Hinweise zum Schallimmissionsschutz bei Windkraftanlagen mit Stand 30.06.2016 anzuwenden.
- Die LAI bittet ihren Vorsitzenden, die Hinweise der ACK/UMK zur Kenntnisnahme vorzulegen.

Anlage: Entwurf der LAI-Hinweise zum Schallimmissionsschutz von Windkraftanlagen mit Stand 30.06.2016

SCHALLIMMISSIONSPROGNOSEN (ALLGEMEIN)

Vorbelastung:

- Alle bestehenden und genehmigten Anlagen, für die die TA Lärm gilt
- Bei WEA: Pegel aus Genehmigung oder
 - · sachlich begründete Abschätzung
 - liegt ein Messbericht vor, kann auch dieser herangezogen werden
 - Referenzspektrum oder Oktavspektren aus Messberichten

Zusatzbelastung:

- Angaben des WEA-Herstellers (Schallleistungspegel + Oktavspektrum)
- Einfachvermessung (gem. FGW TR1 mit IEC 61400-11)
- Mehrfachvermessung (zusammenfassender Bericht aus mindestens 3 Einfachvermessungen gem. FGW TR1)

SCHALLIMMISSIONSPROGNOSEN (ALLGEMEIN)

Prognose der Schallausbreitung:

Gem. Nr. A 2 der TA Lärm nach der DIN ISO 9613-2

nur für bodennahe Quellen

"Interimsverfahren"

sowohl für Vor-, als auch für Zusatzbelastung frequenzselektiv

SCHALLIMMISSIONSPROGNOSEN (INTERIMSVERFAHREN)

- Alle Geräusche einer WEA durch eine Ersatzschallquelle beschrieben
- Ersatzschallquelle: ungerichtete, frequenzabhängige Punktschallquelle im Rotormittelpunkt

Schallausbreitung:

Immissionspegel in einem Aufpunkt IP: $L_{fT}(DW) = L_W + D_c - A$

 L_W : Oktavband - Schallleistungspegel

 D_c : Richtwirkungskorrektur (für eine ungerichtete Punktschallquelle ist $D_c = 0 \ dB$)

A: Oktavbanddämpfung

SCHALLIMMISSIONSPROGNOSEN (INTERIMSVERFAHREN)

Dämpfungsterm:

$$A = A_{div} + A_{atm} + A_{gr} + A_{bar} + A_{misc}$$

 A_{div} : Dämpfung aufgrund geometr. Ausbreitung

 A_{atm} : Dämpfung aufgrund von Luftabsorption

 A_{gr} : Dämpfung aufgrund des Bodeneffekts

A_{bar}: Dämpfung aufgrund von Abschirmung

 A_{misc} : Dämpfung aufgrund anderer Effekte

Es gilt: $A_{gr} = -3 dB$ (wesentliche Modifizierung des Schemas der DIN ISO 9613-2)

Meteorologische Korrektur:

$$L_{AT}(LT) = L_{AT}(DW) - C_{met}$$
 mit: $C_{met} = 0 dB$

SCHALLIMMISSIONSPROGNOSEN (INTERIMSVERFAHREN)

- Einhaltung der Immissionsrichtwerte (IRW) der TA Lärm mit einer Wahrscheinlichkeit von 90%
- Teil-Unsicherheiten: Typvermessung σ_R (0,5dB wenn nach FGW verm.)
 - Serienstreuung σ_P (s bei Mehrfachverm. sonst 1,2dB)
 - Prognosemodell σ_{Prog} (1dB)
- Gesamtunsicherheit: $\sigma_{ges} = \sqrt{\left(\sigma_R^2 + \sigma_P^2 + \sigma_{Prog}^2\right)}$
- Obere Vertrauensbereichsgrenze (90%): $\Delta L = k \sigma_{ges}$ mit: k = 1,28

"Die Unsicherheit der Emissionsdaten der Vorbelastungsanlagen ist in der gleichen Weise zu berücksichtigen, wie sie im Rahmen der Genehmigungen der Vorbelastungsanlagen angewandt wurde."

EMPFEHLUNGEN FÜR NEBENBESTIMMUNGEN DER GENEHMIGUNG

- Planung auf Basis von Herstellerangaben:
 - Abnahmemessung innerhalb eines Jahres, sofern Anlage im erweiterten Einwirkungsbereich maßgeblicher Immissionsorte liegt
 - Nachtbetrieb sollte erst nach erfolgter Typvermessung aufgenommen werden
- Es liegt nur ein Emissionsbericht vor:
 - Abnahmemessung wird empfohlen
- Es liegt eine Mehrfachvermessung vor:
 - Auf eine Abnahmemessung kann prinzipiell verzichtet werden

Wird eine Tonhaltigkeit festgestellt (Abnahmemessung oder Planungsunterlagen), ist deren Immissionsrelevanz zu untersuchen.

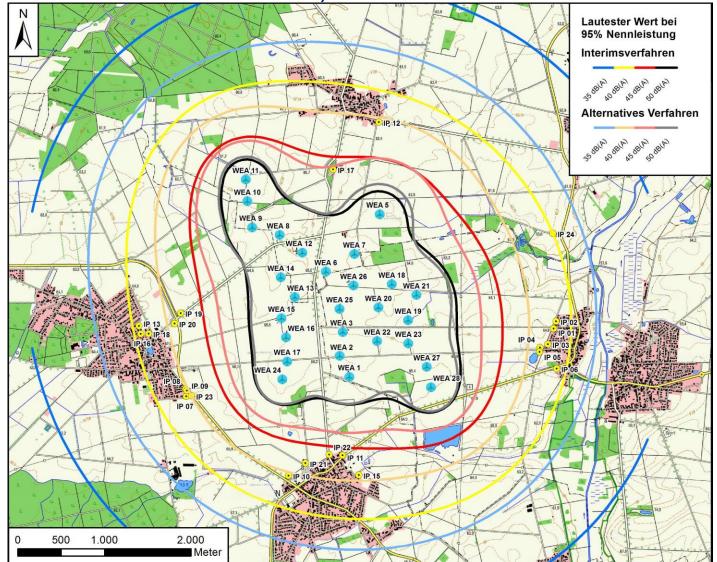
MESSUNGEN ZUR VALIDIERUNG DER PROGNOSE

Emissionsseitige Abnahmemessungen:

- nach FGW-Richtlinie TR1 ("Bestimmung der Schallemissionswerte")
- erneute Schallausbreitungsberechnung nach dem "Interimsverfahren" (ohne Berücksichtigung von σ_{Prog})

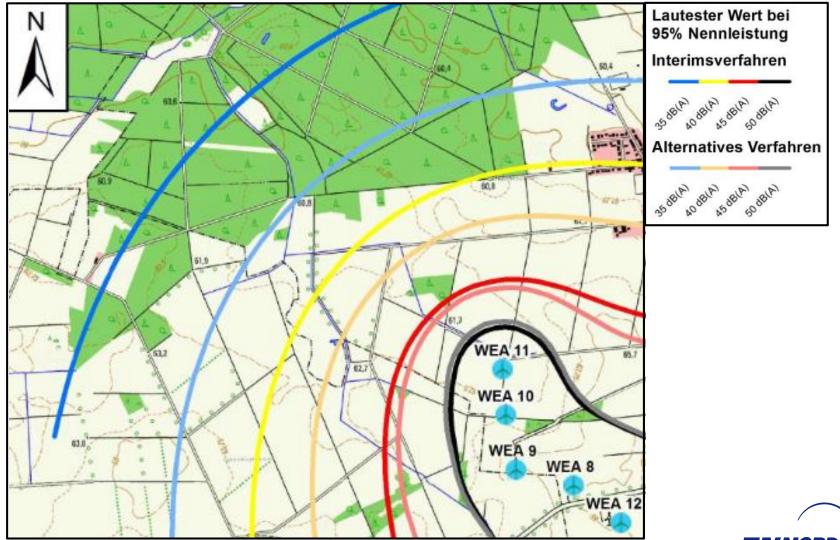
Immissionsmessungen:

- messtechnisch schwieriger als Emissionsmessungen
- i.d.R. nachts durchzuführen
- Prüfung der Immissionsrelevanz von Tonhaltigkeiten

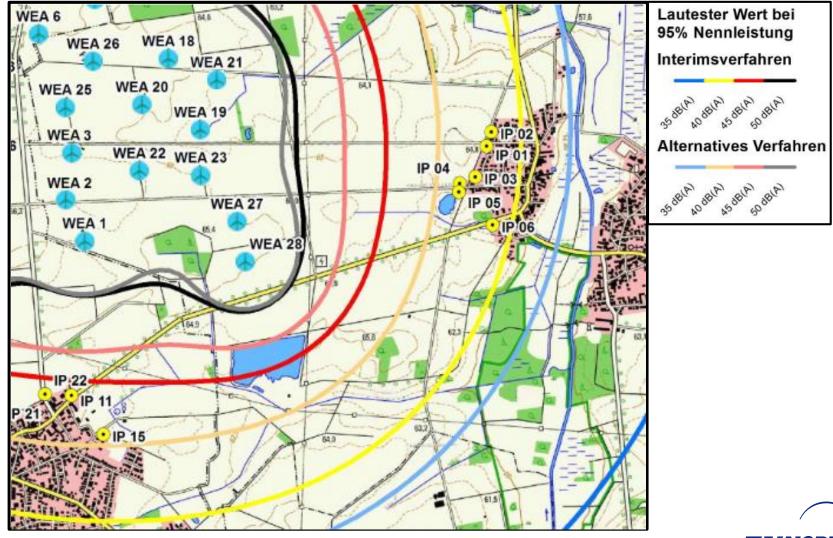

AUSWIRKUNGEN DES INTERIMSVERFAHRENS

- Erhöhung der Immissionspegel bis ca. 3 dB(A)
 - Zunahme von Richtwertüberschreitungen um ca. 30%
- Eine Umsetzung des Interimsverfahrens in der Praxis wird zu einer Reduzierung der für Windenergieprojekte nutzbaren Flächen führen.
- Vermehrt n\u00e4chtliche Schall- und Leistungsreduzierungen bis hin zu Abschaltungen
- Die Anwendung des Interimsverfahrens auf Vorbelastungen wird Gerichte,
 Behörden und Gutachter vor Herausforderungen stellen.

Bestandsschutz???



AUSWIRKUNGEN DES INTERIMSVERFAHRENS (BSP. AUS DER PRAXIS)



AUSWIRKUNGEN DES INTERIMSVERFAHRENS (BSP. AUS DER PRAXIS)

AUSWIRKUNGEN DES INTERIMSVERFAHRENS (BSP. AUS DER PRAXIS)

UMGANG MIT DEM INTERIMSVERFAHREN

- Was können die WEA Hersteller tun?
 - Bereitstellung einer größeren Anzahl unterschiedlicher Betriebsmodi
 - Herstellung geräuschärmerer Rotorblätter (Serrations)
 - Zeitnahe Schallvermessung neuer WEA-Typen (möglichst mehrfach und auch reduzierte Modi)
- Was tut TÜV NORD als Gutachter?
 - Konsequentes Vorgehen bzgl. des Einwirkungsbereiches der Vorbelastung
 - Verhältnismäßiger Umgang mit der Anwendung von Irrelevanzkriterien
 - Layout-Optimierung / Optimierung der Betriebsmodi durch kombinierte Ertrags- und Schallimmissionsberechnungen

Vielen Dank für Ihre Aufmerksamkeit!

Wie sind Ihre bisherigen Erfahrungen?

TÜV NORD EnSys GmbH & Co. KG

Dr. Rasmus Fischer

Sachverständiger Wind Site Assessment Renewables

Große Bahnstraße 31

22525 Hamburg, Germany

Phone +49 40 8557 2390

Email: renewables@tuev-nord.de

